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Abstract
Curvature properties of three-dimensional Lorentz manifolds admitting a
parallel degenerate line field are examined. A complete characterization of
those manifolds being locally symmetric or locally conformally flat is obtained.
The results of this study show nice families of examples of such properties
within the Lorentzian setting.

PACS number: 02.40.Ma
Mathematics Subject Classification: 53C50, 53B30

1. Introduction

It is well known that the existence of a parallel line field on a Riemannian manifold gives
rise to a local decomposition of the manifold as a direct product. This property extends to
semi-Riemannian manifolds whenever the line field is nondegenerate, i.e., is spanned by a
non-null locally defined vector field. However, the geometrical consequences of the existence
of a parallel degenerate line field are not yet well understood.

An additional motivation for investigating the influence of a parallel null vector field comes
from the nonuniqueness of the Levi-Civita connection in the semi-Riemannian setting. Indeed,
two non-homothetic Riemannian metrics give rise to the same Levi-Civita connection if and
only if the manifold decomposes locally as a product. Moreover non-locally decomposable
different Lorentzian metrics may have the same Levi-Civita connection if and only if there
exists a parallel null vector on the manifold [8].

Recall that a parallel degenerate line field D (i.e., ∇D ⊂ D) is not necessarily spanned
by a locally defined parallel null vector U but instead ∇U = ω ⊗ U . Such vector fields are
usually called recurrent vector fields in the literature (cf [4, 5] and the references therein for
more information). Note that in such case ‖∇U‖2 = 0 but ∇U �= 0.
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In this paper we will focus on the curvature properties of three-dimensional Lorentz
manifolds admitting a parallel degenerate line field. Since the curvature tensor of any three-
manifold is completely determined by its Ricci tensor, we pay special attention to the behaviour
of the Ricci operator.

2. The geometry of a three-dimensional Lorentz manifold

An important observation for our purpose is the existence of canonical coordinates adapted
to a parallel plane field (cf [10, 11]). Hence, a three-dimensional Lorentz manifold (M, g)

admitting a parallel degenerate line field has local coordinates (t, x, y) where the Lorentzian
metric tensor is expressed

g =

0 0 1

0 ε 0
1 0 f (t, x, y)


 (1)

for some function f (t, x, y), where ε = ±1 and the parallel degenerate line field becomes
D = 〈

∂
∂t

〉
.

Moreover, note that the existence of a parallel null vector U = ∂/∂t influences the
coordinates above in the sense that the function f (t, x, y) ≡ f (x, y) [10].

2.1. Levi-Civita connection

It follows after a straightforward calculation that the Levi-Civita connection of any metric (1)
is given by

∇∂t
∂y = 1

2
ft∂t

∇∂x
∂y = 1

2
fx∂t (2)

∇∂y
∂y = 1

2
(fft + fy)∂t − 1

2ε
fx∂x − 1

2
ft∂y,

where ∂t , ∂x, ∂y are the coordinate vector fields ∂
∂t

, ∂
∂x

and ∂
∂y

, respectively. Hence, if (M, g)

admits a parallel null vector field, then the associated Levi-Civita connection satisfies

∇∂x
∂y = 1

2
fx∂t , ∇∂y

∂y = 1

2
fy∂t − 1

2ε
fx∂x. (3)

Deciding on the geodesic completeness of a semi-Riemannian metric is not an easy task.
However, a simple criterion for geodesic completeness is as follows [6]: ‘A semi-Riemannian
metric defined globally on R

n whose Christoffel symbols satisfy �k
ij = 0 for all i, j < k is

geodesically complete’.
Hence, any metric (1) on R

3 with U = ∂/∂t a parallel null vector is geodesically complete.

2.2. Curvature tensor

Let R denote the curvature tensor taken with the sign convention R(X, Y ) = ∇[X,Y ]−[∇X,∇Y ].
Then the nonzero components of the curvature tensor of any metric (1) are given by

R(∂t , ∂y)∂t = −1

2
ftt ∂t

R(∂t , ∂y)∂x = −1

2
ftx∂t
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R(∂t , ∂y)∂y = −1

2
fftt ∂t +

1

2ε
ftx∂x +

1

2
ftt ∂y

R(∂x, ∂y)∂t = −1

2
ftx∂t

R(∂x, ∂y)∂x = −1

2
fxx∂t

R(∂x, ∂y)∂y = −1

2
fftx∂t +

1

2ε
fxx∂x +

1

2
ftx∂y.

(4)

Further note that the existence of parallel null vector field simplifies (4) as follows:

R(∂x, ∂y)∂x = −1

2
fxx∂t , R(∂x, ∂y)∂y = 1

2ε
fxx∂x. (5)

As a matter of notation, let Ric and Sc be the Ricci tensor and the scalar curvature of
(M, g), defined by Ric(X, Y ) = trace{Z �→ R(X,Z)Y } and Sc = trace Ric, respectively.
Moreover, let R̂ic be the Ricci operator defined by 〈R̂ic(X), Y 〉 = Ric(X, Y ). Then the Ricci
tensor of any metric (1) satisfies

Ric =




0 0 1
2ftt

0 0 1
2ftx

1
2ftt

1
2ftx

1
2ε

(εfftt − fxx)


 , (6)

when expressed in the local coordinate basis. Moreover, the Ricci operator R̂ic of a metric
(1), when expressed in the coordinate basis, takes the form

R̂ic =




1
2ftt

1
2ftx − 1

2ε
fxx

0 0 1
2ε

ftx

0 0 1
2ftt


 . (7)

Hence, the Ricci operator has eigenvalues

λ1 = 0, λ2 = λ3 = 1
2ftt ,

and thus the scalar curvature satisfies

Sc = ftt . (8)

Observe from the eigenvalue structure of R̂ic that a metric (1) is Einstein if and only if it
is Ricci flat (indeed, is flat since dim M = 3).

Remark 1. Examples of Lorentzian three-manifolds with constant Ricci curvatures are easily
constructed from (7). Indeed, a metric (1) has constant Ricci eigenvalues if and only if it is
locally given by

f (t, x, y) = κt2 + tP (x, y) + ξ(x, y),

for any functions P(x, y), ξ(x, y). Further note that even in this case the Ricci operator is not
necessarily diagonalizable. In fact, it follows from (7) that R̂ic is diagonalizable with respect
to an orthonormal basis if and only if ftx = 0 and fxx = 0. Hence, a metric (1) with constant
Ricci curvatures has diagonalizable Ricci operator if and only if

f (t, x, y) = κt2 + tP (y) + xη(y) + ξ(y)

for any functions P, η and ξ .
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Remark 2. A scalar curvature invariant of order m is a polynomial in the components
∇k

i1,...,ik
Rabcd , k = 0, . . . of the curvature tensor and its m covariant derivatives with respect to

some orthonormal basis, which is independent of the choice of this orthonormal basis at each
point p ∈ M .

Let (M, g) be a three-dimensional Lorentz manifold admitting a parallel null vector field.
Then, the nonzero components of the curvature tensor are those given by

R(∂x, ∂y)∂x = −1

2
fxx∂t , R(∂x, ∂y)∂y = 1

2ε
fxx∂x.

Moreover, the covariant derivative of the curvature tensor is given by(∇∂x
R

)
(∂x, ∂y)∂x = − 1

2fxxx∂t ,
(∇∂y

R
)
(∂x, ∂y)∂x = − 1

2fxxy∂t .

Hence, since U = ∂t is parallel, it follows that the nonzero components of the higher order
covariant derivatives of the curvature tensor produce higher order derivatives of f in the
direction of ∂t . Moreover, since the inverse of the metric (1) satisfies

g−1
(t,x,y) =


−f (x, y) 0 1

0 1
ε

0
1 0 0


 (9)

it follows that (g−1)(∂x, ∂y) = 0, and thus all scalar curvature invariants of a three-
dimensional Lorentz manifold (M, g) admitting a parallel null vector field vanish identically.

3. Einstein-like manifolds

Einstein metrics as well as constant scalar curvature metrics are important classes of semi-
Riemannian manifolds. However, in addition to parallel Ricci tensor (which lies between both
classes above) there are other Ricci curvature properties which deserve further investigation.

Definition 3. Following the terminology of Gray [7] we say that

• (M, g) has cyclic parallel Ricci tensor if (∇XRic)(X,X) = 0 for all vectors X.
• The Ricci tensor is Codazzi (or equivalently, (M, g) has harmonic curvature) if

(∇XRic)(Y, Z) = (∇Y Ric)(X,Z) for all X, Y,Z.
• (M, g) is said to be a C⊥-manifold if

(∇XRic)(Y, Z) = 1

(n + 2)(n − 1)

{
nX(Sc)〈Y,Z〉

+
1

2
(n − 2)[Y (Sc)〈X,Z〉 + Z(Sc)〈X, Y 〉]

}
for all vector fields X, Y,Z on M.

Theorem 4. A three-dimensional Lorentz manifold admitting a parallel degenerate line field
is locally symmetric if and only if it the function f in the metric (1) takes either form of the
following:

f (t, x, y) = t2κ + t (xP (y) + Q(y)) +
x2

4κ
P (y)2 + xβ(y) + ξ(y), (10)

for any functions P(y),Q(y), β(y) and ξ(y) satisfying the linear differential equation

P ′ + 1
2PQ = κβ

and any real constant κ �= 0, or

f (t, x, y) = tQ(y) + x2α(y) + xβ(y) + ξ(y), (11)
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for any functions Q(y), α(y), β(y) and ξ(y) satisfying the linear differential equation

α′ + Qα = 0.

Remark 5. The metrics given by (10) have scalar curvature Sc = 2κ while those defined by
(11) have zero scalar curvature.

Proof of theorem 4. Note that, since the curvature tensor of a three-dimensional manifold is
completely determined by the Ricci tensor, the metric is locally symmetric if and only if the
Ricci tensor is parallel. The covariant derivative of the Ricci tensor is obtained after some
calculation from (2) and (6), showing that the nonzero components are given by(∇∂t

Ric
)
(∂t , ∂y) = 1

2
fttt(∇∂t

Ric
)
(∂x, ∂y) = (∇∂x

Ric
)
(∂t , ∂y) = 1

2
fxtt(∇∂t

Ric
)
(∂y, ∂y) = − 1

2ε
(fxxt − εffttt )(∇∂x

Ric
)
(∂x, ∂y) = 1

2
fxxt

(12)(∇∂x
Ric

)
(∂y, ∂y) = − 1

2ε
(fxxx − εffxtt )(∇∂y

Ric
)
(∂t , ∂y) = 1

2
fytt(∇∂y

Ric
)
(∂x, ∂y) = 1

4
(ftftx + 2ftxy − fxftt )(∇∂y

Ric
)
(∂y, ∂y) = − 1

2ε
(fyxx + fxxft − fxftx − εffytt ).

Now, it follows from the first condition in (12) that the defining function f (t, x, y) satisfies

f (t, x, y) = t2κ(x, y) + tλ(x, y) + ξ(x, y),

and from the components
(∇∂t

Ric
)
(∂x, ∂y) and

(∇∂y
Ric

)
(∂t , ∂y) one has that κ(x, y) is constant

κ(x, y) ≡ κ .
Next, since

(∇∂x
Ric

)
(∂x, ∂y) = 1

2fxxt = 0 one has that λxx = 0, and thus

f (t, x, y) = t2κ + t (xP (y) + Q(y)) + ξ(x, y),

for some functions P,Q, ξ . Moreover, since fxtt = 0 one has
(∇∂x

Ric
)
(∂y, ∂y) =

− 1
2ε

(fxxx − εffxtt ) = − 1
2ε

fxxx = 0, and thus ξxxx = 0, which shows that

f (t, x, y) = t2κ + t (xP (y) + Q(y)) + x2α(y) + xβ(y) + ξ(y).

Next, note that a metric (1) defined by a function f (t, x, y) as above has parallel Ricci
tensor if and only if(∇∂y

Ric
)
(∂x, ∂y) = 1

4
(ftftx + 2ftxy − fxftt )

= 1

4
(xP 2 + PQ − 4xκα − 2κβ + 2P ′) ≡ 0,

(∇∂y
Ric

)
(∂y, ∂y) = − 1

2ε
(fyxx + fxxft − fxftx − εffytt )

= 1

2ε
(tP 2 + Pβ − 2(2tκ + Q)α + α′) ≡ 0.



846 M Chaichi et al

Finally we will consider separately the different possibilities κ �= 0 and κ = 0.
If κ = 0, then the first equation above gives P(y) ≡ 0, and thus the second one becomes

α′(y) + Q(y)α(y) ≡ 0.

This shows that a metric (1) given by

f (t, x, y) = tQ(y) + x2α(y) + xβ(y) + ξ(y)

is locally symmetric if and only if α(y) is a solution of the linear differential equation
α′(y) + Q(y)α(y) = 0.

If κ �= 0, we have the necessary and sufficient condition as a set of PDEs as follows:

P 2 − 4κα = 0, PQ − 2κβ + 2P ′ = 0, Pβ − 2Qα − 2α′ = 0,

where the third equation is a consequence of the second one ( just using that α = 1
4κ

P 2).
Hence, a metric (1) is locally symmetric if and only if the defining function f (t, x, y) satisfies

f (t, x, y) = t2κ + t (xP (y) + Q(y)) +
x2

4κ
P (y)2 + xβ(y) + ξ(y),

where P is a solution of the linear differential equation

P ′ + 1
2PQ = κβ. �

The Ricci operator of a locally symmetric metric tensor (1) defined by a function f

satisfying (10), when expressed in the coordinate vector fields satisfies

R̂ic =




κ 1
2P(y) − 1

4κε
P (y)2

0 0 1
2ε

P (y)

0 0 κ


 ,

which is diagonalizable with respect to an orthonormal basis if and only if P ≡ 0. Note that
for any metric tensor (1) defined by (10) with P ≡ 0 one has

f (t, x, y) = t2κ + tQ(y) + ξ(y),

so it is locally a product of a Lorentz surface of constant Gaussian curvature κ (defined by the
coordinates (t, y)) and an interval.

The Ricci operator of a locally symmetric metric tensor (1) defined by a function f given
by (11), when expressed in the coordinate vector fields satisfies

R̂ic =




0 0 − 1
ε
α(y)

0 0 0

0 0 0


 ,

which is diagonalizable with respect to an orthonormal basis if and only if α ≡ 0 (if and only
if the metric is flat).

Theorem 6. A three-dimensional Lorentz manifold admitting a parallel null vector field is
locally symmetric if and only if it is locally given by (1) where the function f satisfies

f (x, y) = x2α + xβ(y) + ξ(y), (13)

for any functions β(y) and ξ(y) and any constant α ∈ R.
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3.1. Cyclic-parallel Ricci tensor and C⊥-manifolds

Clearly any manifold with parallel Ricci tensor has cyclic-parallel Ricci tensor and it is a
C⊥-manifold, but the converse is not true in general.

Theorem 7. Let (M, g) be a three-dimensional Lorentz manifold admitting a parallel
degenerate line field. Then the Ricci tensor of M is cyclic parallel if and only if it is parallel.

Proof. Let σ denote the cyclic sum. Then for metric (1), the nonzero components of

σ(∇XRic)(Y, Z) = (∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X, Y ),

are given by (compare with (12))

σ
(∇∂y

Ric
)
(∂t , ∂t ) = fttt

σ
(∇∂y

Ric
)
(∂t , ∂x) = fxtt

σ
(∇∂y

Ric
)
(∂t , ∂y) = − 1

2ε
fxxt + fytt +

1

2
ffttt

(14)
σ
(∇∂y

Ric
)
(∂x, ∂x) = fxxt

σ
(∇∂y

Ric
)
(∂x, ∂y) = 1

2ε
{−fxxx + ε(ftftx + 2ftxy − fxftt + ffxtt )}

σ
(∇∂y

Ric
)
(∂y, ∂y) = 1

2ε
{3(−fyxx − fxxft + fxftx + εffytt )}.

Proceeding as in the proof of theorem 4 it follows that the defining function f (t, x, y) of
any metric (1) with cyclic parallel Ricci tensor satisfies

f (t, x, y) = t2κ + t (xP (y) + Q(y)) + x2α(y) + xβ(y) + ξ(y).

Now, the necessary and sufficient conditions for (∇XRic)(X,X) = 0 become

σ
(∇∂y

Ric
)
(∂x, ∂y) = 1

4
(xP 2 + PQ − 4xκα − 2κβ + 2P ′) ≡ 0,

σ
(∇∂y

Ric
)
(∂y, ∂y) = 1

2ε
(tP 2 + Pβ − 2(2tκ + Q)α + α′) ≡ 0,

which shows that the Ricci tensor is parallel (cf the proof of theorem 4). �

Theorem 8. Let (M, g) be a three-dimensional Lorentz manifold admitting a parallel
degenerate line field. Then (M, g) is a C⊥-manifold if and only if the Ricci tensor of M
is parallel.

Proof. Let C⊥ the (0, 3)-tensor field defined by

C⊥(X, Y,Z) = (∇XRic)(Y, Z) − 1

(n + 2)(n − 1)

{
nX(Sc)〈Y,Z〉

+
1

2
(n − 2)[Y (Sc)〈X,Z〉 + Z(Sc)〈X, Y 〉]

}
.

Now, it follows after a straightforward calculation that

C⊥(∂y, ∂t , ∂t ) = − 1
10fttt

C⊥(∂y, ∂x, ∂t ) = − 1
20fxtt

C⊥(∂y, ∂x, ∂x) = − 3
10fytt
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which shows that the metric (1) is defined by a function

f (t, x, y) = t2κ + ξ(x, y)

for some constant κ ∈ R. Now, since C⊥(∂y, ∂x, ∂y) = − 1
2κξx it follows that either

ξ(x, y) ≡ ξ(y) (if κ �= 0), or otherwise if κ = 0, then C⊥(∂y, ∂x, ∂x) = − 1
2ε

ξxxx and
C⊥(∂y, ∂y, ∂y) = − 1

2ε
ξyxx . Note that in both cases one has that the Ricci tensor is parallel just

comparing with the result of theorem 4. �

3.2. Harmonic curvature and local conformal flatness

A three-dimensional manifold is locally conformally flat if and only if the Schouten tensor c
vanishes identically, where

c(X, Y,Z) = (∇XRic)(Y, Z) − (∇Y Ric)(X,Z)− 1

2(n − 2)
{〈(∇XSc)Y, Z〉− 〈(∇Y Sc)X,Z〉},

for all vector fields X, Y,Z. Hence, the Ricci tensor of any locally conformally flat manifold
with constant scalar curvature is Codazzi. Now, the nonzero components of the Schouten
tensor of a three-dimensional Lorentz metric admitting a parallel degenerate line field are as
follows:

c(∂x, ∂t , ∂x) = −c(∂t , ∂x, ∂x) = 1

2
εfttt

c(∂y, ∂t , ∂x) = −c(∂t , ∂x, ∂y) = c(∂x, ∂t , ∂y) = −c(∂t , ∂y, ∂x) = −1

2
fxtt

c(∂y, ∂t , ∂y) = −c(∂t , ∂y, ∂y) = 1

2ε
fxxt (15)

c(∂y, ∂x, ∂x) = −c(∂x, ∂y, ∂x) = −1

2
(fxxt + εfytt )

c(∂y, ∂x, ∂y) = −c(∂x, ∂y, ∂y) = 1

4ε
(2fxxx + εftfxt + 2εftxy − εfxftt ).

Hence it follows that a metric (1) is locally conformally flat if and only if the defining
function f (t, x, y) satisfies

f (t, x, y) = t2κ + t (xP (y) + Q(y)) + ξ(x, y) (16)

for any functions P,Q and ξ satisfying

c(∂y, ∂x, ∂y) = 1

4ε
{εxP 2 + εPQ + 2εP ′ − 2εκξx + 2ξxxx}. (17)

Theorem 9. Let (M, g) be a three-dimensional Lorentz manifold admitting a parallel
degenerate line field. Then the following are equivalent:

(i) The Ricci tensor is Codazzi.
(ii) (M, g) is locally conformally flat.

(iii) There is a local system of coordinates where the metric is given by (1) for a defining
function

f (t, x, y) = t2κ + t (xP (y) + Q(y)) + ξ(x, y)

for arbitrary functions P and Q, where ξ is a solution of the linear differential equation

2ξxx − 2εκξ = γ − x2

2
εP 2 − εx(PQ + 2P ′)

and γ (y) is an arbitrary function.
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Proof. Note from (16) that any locally conformally flat metric (1) has constant scalar curvature
Sc = 2κ . Hence the Ricci tensor of any locally conformally flat three-dimensional Lorentz
manifold admitting a parallel degenerate line field is Codazzi. Moreover, since any manifold
with harmonic curvature has constant scalar curvature, it follows that (i) and (ii) are equivalent.

Next we will obtain the local form of any locally conformally flat metric (1). Note from
(17) that εxP 2 + εPQ + 2εP ′ − 2εκξx + 2ξxxx = 0, and thus 2ξxx − 2εκξ + ε x2

2 P 2 + x(εPQ +
2εP ′) = γ for some function γ (y). �

Remark 10. It follows from the previous theorem that locally conformally flat metrics (1)
with vanishing scalar curvature (i.e., κ = 0) are those given by

f (t, x, y) = t (xP + Q) − ε
x4

24
P 2 − ε

x3

6
(PQ + 2P ′) +

x2

2
γ + xδ + ξ,

for arbitrary functions P(y),Q(y), γ (y), δ(y) and ξ(y).

Theorem 11. Let (M, g) be a three-dimensional Lorentz manifold admitting a parallel null
vector. Then the following are equivalent:

(i) The Ricci tensor is Codazzi.

(ii) (M, g) is locally conformally flat.

(iii) There is a local system of coordinates where the metric is given by (1) for a defining
function

f (t, x, y) = x2γ (y) + xη(y) + ξ(y)

where γ , η and ξ are arbitrary functions.

Remark 12. The metrics in theorem 11 are locally symmetric if and only if γ (y) is a constant
function.

The Ricci operator of a locally conformally flat metric as in theorem 9, expresses in the
coordinate basis as

R̂ic =




κ 1
2P(y) − 1

2ε
ξxx(x, y)

0 0 1
2ε

P (y)

0 0 κ


 .

Hence, the Ricci operator is diagonalizable with respect to an orthonormal basis if and only if
P ≡ 0, ξxx ≡ 0.

It was shown in [3] that a complete connected locally conformally flat three-dimensional
Riemannian manifold with both Sc � 0 and ‖Ric‖2 = constant is either isometric to a space
form of constant sectional curvature or to a Riemannian product M2(c) × R, or M2(c) × S1.

An immediate application of theorem 11 shows that an analogous statement is no longer
true in the Lorentzian setting, since any metric (1) with f (t, x, y) = x2γ (y) + xη(y) + ξ(y)

for arbitrary functions γ , η and ξ is locally conformally flat with Sc = 0 and ‖Ric‖2 = 0
(see expression of the inverse of the metric (9)). Moreover, any such metric defined on R

3 is
geodesically complete.
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4. Summary and conclusions

After stating some basic facts in section 2, we considered some different Einstein-like
properties [7] showing that

• the Ricci tensor of a three-dimensional Lorentz manifold admitting a parallel degenerate
line field is cyclic parallel if and only if it is parallel, and hence locally symmetric
(cf theorem 8).

• A three-dimensional Lorentz manifold admitting a parallel degenerate line field has
harmonic curvature (or equivalently the Ricci tensor is Codazzi) if and only if it is
locally conformally flat (cf theorem 9).

As an application, we showed a family of complete locally conformally flat Lorentz
manifolds with zero scalar curvature which are neither of constant sectional curvature nor
isometric to a product of a surface of constant curvature and a real line.

It is worth mentioning that any three-dimensional Lorentz manifold admitting a parallel
null vector field has vanishing scalar curvature invariants while it need not be locally
homogeneous (see also [2]). Moreover, note that many such examples can be constructed
to be geodesically complete and locally conformally flat but not locally homogeneous.

Finally, note that those locally conformally flat metrics predicted in [3] are locally
symmetric, which may occur in the family of metrics in theorem 11 if and only if γ (y)

is constant.
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